Lógica & Computabilidade 2025-1

Segunda Chamada da Prova 2

18 de julho de 2025

Você pode usar tudo que foi feito em sala ou listas de exercícios; apenas cite claramente quando o fizer. Você também pode usar uma questão da prova na solução de outra, desde que não crie dependências circulares.

Justifique todas as suas respostas!

Nessa prova, assuma como verdadeiro o seguinte:

Teorema (Corretude e Completude da LPO). $\Sigma \vDash \varphi \iff \Sigma \vdash \varphi$

Outro lembrete:

Definição. Dizemos que um conjunto Σ de fórmulas da LPO em alguma assinatura é *satisfazível* se existem uma estrutura $\mathcal E$ da assinatura e uma atribuição a para essa estrutura tal que $\mathcal E, a$ torna todas as fórmulas em Σ verdadeiras simultaneamente.

Questão 1. Sejam α , β fórmulas tais que a variável x não ocorra livremente em β . Prove que:

a (1.75 pontos).
$$\forall x (\alpha \rightarrow \beta) \vdash (\exists x \alpha) \rightarrow \beta$$

b (1,75 pontos).
$$(\exists x \ \alpha) \rightarrow \beta \vdash \forall x \ (\alpha \rightarrow \beta)$$

Questão 2 (2,5 pontos). Prove o seguinte teorema:

Teorema (Compacidade). Σ é satisfazível se, e somente se, todo subconjunto finito $\Sigma_0 \subseteq \Sigma$ é satisfazível.

Dica: na "volta", experimente provar a contrapositiva, usand o Teorema da Completude aliado ao fato de que Σ é insatisfazível sse $\Sigma \vDash \psi$ para alguma fórmula contraditória ψ (não precisa provar esse fato). Lembre-se que o símbolo \vdash é usado quando uma certa árvore fecha—o que isso tem a ver com "finitude"?

Questão 3. Considere a assinatura que tem

- $\bullet\,$ símbolos para operações binárias \oplus e $\odot\,$
- um símbolo para relação binária ⊲
- ullet para cada número natural n, um símbolo para constante c_n

Seja $\mathcal{E}_{\mathbb{N}}$ a estrutura para essa assinatura que tem como domínio o conjunto \mathbb{N} dos números naturais, onde \oplus , \odot e \triangleleft são interpretadas respectivamente como adição, multiplicação e "estritamente menor que", e onde cada c_n é interpretada como o natural n. Finalmente, seja S o conjunto de todas as sentenças dessa assinatura que são verdadeiras na estrutura $\mathcal{E}_{\mathbb{N}}$.

Por exemplo, as seguintes sentenças

$$\forall x [c_1 \neq x \rightarrow \neg \exists y (x \odot y = c_1)]$$

$$\forall x \forall y [(x \triangleleft y) \lor (x = y) \lor (y \triangleleft x)]$$

estão em S, mas a seguinte sentença não está:

$$\exists x \, \forall y \, (y \triangleleft x)$$

pois não existe um número natural maior que todos os outros.

a (1,75 pontos). Seja Σ o seguinte conjunto de fórmulas

$$\Sigma = \mathsf{S} \cup \{c_n \triangleleft x \mid n \in \mathbb{N}\}.$$

Note que algumas das fórmulas em Σ são sentenças, e outras têm a variável x livre.

Prove que Σ não é "satisfazível em $\mathcal{E}_{\mathbb{N}}$ ": não existe atribuição a para $\mathcal{E}_{\mathbb{N}}$ tal que $\mathcal{E}_{\mathbb{N}}$, a satisfaça todas as fórmulas em Σ simultaneamente.

b (2,25 pontos). Prove que Σ é satisfazível.

Dica: Use o Teorema da Compacidade:)