Lógica & Computabilidade 2025-1

Prova 1

30 de maio de 2025

Você pode usar tudo que foi feito em sala ou listas de exercícios; apenas cite claramente quando o fizer. Você também pode usar uma questão da prova na solução de outra, desde que não crie dependências circulares.

Justifique todas as suas respostas!

Questão 1. Prove, usando árvores de avaliação:

a (1,5 ponto).
$$\varphi \to \psi \vdash (\psi \to \alpha) \to (\varphi \to \alpha)$$

b (1,5 ponto).
$$\varphi \to \psi \quad \nvdash \quad (\varphi \to \alpha) \to (\psi \to \alpha)$$

Questão 2 (2 pontos).

Definição. Um conjunto Σ de fórmulas é dito

• consistente se não tem como consequência sintática nenhuma fórmula contraditória (falsa em todos os contextos), i.e., se para toda fórmula contraditória φ temos

$$\Sigma \nvdash \varphi$$

• cheio se para toda fórmula φ da LC temos $\varphi \in \Sigma$ ou $(\neg \varphi) \in \Sigma$.

Assuma (sem prova) o seguinte resultado.

Teorema (Lema de Lindenbaum). Se Σ é um conjunto consistente de fórmulas, então Σ está contido em algum conjunto de fórmulas que é consistente e cheio.

<u>Prove que</u>, se Σ é consistente, então Σ é satisfazível (i.e., existe algum contexto que satisfaz todas as fórmulas de Σ).

Dica: pelo Lema de Lindenbaum, Σ está contido em algum conjunto Δ que é consistente e cheio. Use essas propriedades para definir um contexto que satisfaz todo o Δ , e portanto também todo o Σ .

Questão 3.

Definição. Sejam \star um conectivo n-ário e i < n. Dizemos que:

 \star é **tipo S na posição** i se para qualquer contexto c temos, para quaisquer fórmulas $\varphi_0,\ldots,\varphi_{n-1}$:

$$c(\star(\varphi_0,\ldots,\varphi_n)) \neq c(\star(\varphi_0,\ldots,\varphi_{i-1},\neg\varphi_i,\varphi_{i+1},\ldots,\varphi_n))$$

(S vem de "Sempre afeta")

 \star é **tipo N na posição** i se para qualquer contexto c temos, para quaisquer fórmulas $\varphi_0, \ldots, \varphi_{n-1}$:

$$c(\star(\varphi_0,\ldots,\varphi_n)) = c(\star(\varphi_0,\ldots,\varphi_{i-1},\neg\varphi_i,\varphi_{i+1},\ldots,\varphi_n))$$

(N vem de "Nunca afeta")

 \star é afim se, em cada uma de suas posições, \star é tipo S ou N .

a (2 pontos). Dentre os conectivos \neg , \land , \lor , \rightarrow e \leftrightarrow , <u>prove</u> quais são e quais não são afins.

b (2 pontos). Suponha que \star , \square , \bullet , \circ sejam conectivos binários tais que para todas fórmulas α e β tenhamos que

$$\alpha \star \beta$$
 é semanticamente equivalente a $(\alpha \bullet \beta) \square (\alpha \circ \beta)$

Prove que se \square , •, • são afins, então \star também é.

c (1 ponto). <u>Prove que</u> que um conjunto composto apenas de conectivos binários afins não pode ser completo.