Números Inteiros e Criptografia, 2020.1

Lista de Exercícios 5

Submeta as soluções das questões marcadas com * até 22 de janeiro às 18:00 salvando um arquivo na sua pasta no Google Drive[†]

Atualizada em 20 de janeiro, 13:00

Justifique todas as questões.

Questão 1. Determine se existem inteiros positivos x, y e z que satisfaçam a equação $2^x \cdot 3^4 \cdot 26^y = 39^z$.

Questão 2.

- * a. Seja k>1 um inteiro. Mostre que todos os números $k!+2,k!+3,\ldots,k!+k$ são compostos.
- * b. Refute a seguinte afirmação: existe um inteiro positivo m tal que, dentre quaisquer m inteiros positivos consecutivos, sempre há pelo menos um primo.

Questão 3.

- * a. Sejam b_1 e b_2 inteiros positivos primos entre si. Mostre que d é um divisor de b_1b_2 sse $d=d_1d_2$ onde $d_1=\mathrm{mdc}(d,b_1)$ e $d_2=\mathrm{mdc}(d,b_2)$.
- * b. Dado um natural n > 0, seja S(n) a soma de todos os divisores naturais de n. Por exemplo, S(2) = 1 + 2 = 3, S(3) = 1 + 3 = 4 e S(6) = 1 + 2 + 3 + 6 = 12. Use o item anterior para mostrar que se b_1 e b_2 são inteiros positivos primos entre si então $S(b_1b_2) = S(b_1)S(b_2)$.
- **Questão 4.** Nesta questão vamos determinar relações entre as fatorações em primos de inteiros positivos a e b com as fatorações em primos de mdc(a,b) e mmc(a,b).
- * a. Sendo $a = 2^{35} \cdot 5^{47} \cdot 101^3$ e $b = 2^{23} \cdot 5^{50} \cdot 43^2$, determine mdc(a, b) e mmc(a, b).
- * b. Descreva um algoritmo que receba as fatorações em primos de dois números naturais $a, b \geq 2$ e retorne as fatorações em primos de $\mathrm{mdc}(a, b)$ e $\mathrm{mmc}(a, b)$. Não utilize diretamente o seguinte fato provado na última lista: $a \cdot b = \mathrm{mdc}(a, b) \cdot \mathrm{mmc}(a, b)$.
- * c. Sendo $a,b,c\geq 2$ naturais, prove que se $\mathrm{mdc}(a,c)=\mathrm{mdc}(b,c)=1$ então $\mathrm{mdc}(ab,c)=1.$ (Dica: use a sua ideia do item (b))

 $^{^{\}dagger}$ Link recebido por email em 4/12/2020. A pasta tem um nome similar a <seu nome> - Cripto 2020.1 - Submissões e Feedback; em caso de qualquer dúvida entre em contato com o professor.

* d. Sendo $a, b \ge 2$ naturais, e baseando-se na sua ideia do item (b) acima, prove que $a \cdot b = \text{mdc}(a, b) \cdot \text{mmc}(a, b)$.

Questão 5. Seja n um inteiro positivo. Determine todos os fatores primos de n!.

Questão 6. Seja bem-vindo ao \mathbb{M} -mundo, onde os únicos números que existem são inteiros positivos que deixam resto 1 quando são divididos por 4. Em outras palavras, os \mathbb{M} -números são

$$\{1, 5, 9, 13, 17, \ldots\}$$

a. "No M-mundo nós não podemos somar dois números": mostre que a soma de dois M-números nunca é um M-número.

 ${\bf b.}$ "No M-mundo nós podemos multiplicar dois números": mostre que o produto de dois M-números é sempre um M-número.

Dados M-números m e n, dizemos que m é um M-divisor de n se existe um M-número k tal que n=mk. Também dizemos que um M-número n é um M-primo se $n \neq 1$ e os únicos M-divisores de n são 1 e o próprio n.

c. Ache os seis primeiros M-primos.

d. Prove ou refute a propriedade fundamental dos \mathbb{M} -primos: Sejam a,b,p \mathbb{M} -números, com p \mathbb{M} -primo. Se p é \mathbb{M} -divisor de ab, então p é \mathbb{M} -divisor de a ou p é \mathbb{M} -divisor de b.

e. Prove ou refute: para qualquer M-número n>1, o menor M-número m>1 que divide n é um M-primo.

f. Descreva um algoritmo que, dado como entrada um \mathbb{M} -número n>1, retorna uma fatoração completa de n em fatores \mathbb{M} -primos.

g. Ache um \mathbb{M} -número n que tem duas fatorações diferentes em \mathbb{M} -primos.

Questão 7. Dado um inteiro positivo n, seja d(n) o número de divisores positivos de n.

Dizemos que um inteiro positivo n é altamente composto se d(m) < d(n) é verdade para todo inteiro positivo m < n. Por exemplo, como d(1) = 1, d(2) = 2 = d(3) e d(4) = 3, temos que 1, 2 e 4 são altamente compostos mas 3 não é.

* a. Implemente em Python uma função que, tendo como entrada um inteiro positivo n, retorna a lista de todos os números altamente compostos menores ou iguais a n. (Nota: submeta sua solução adicionando o arquivo-fonte .py à sua pasta no Drive.)

* b. Determine quantos números inteiros positivos altamente compostos existem até (incluindo, se for o caso) 5000.

Questão 8. Dizemos que um número real x é racional se existem inteiros a, b, com $b \neq 0$, tais que $x = \frac{a}{b}$.

* a. Seja $a \geq 2$ um número natural. Se a decomposição de aem fatores primos é

$$a = \prod_{i=0}^k p_i^{e_i}$$

qual é a decomposição em fatores primos de a^2 ?

* b. Prove o seguinte teorema.

Teorema. Para todo natural n, temos:

 \sqrt{n} é um número racional sse n é um quadrado perfeito (isto quer dizer: \sqrt{n} é um número natural).

Dica: Se $\sqrt{n}>0$ é racional, então $\sqrt{n}=\frac{a}{b}$ para algum par de naturais não nulos a,b. Logo $n=\frac{a^2}{b^2}$. Pela questão 8a, o que se sabe sobre as fatorações em primos de a^2 e b^2 ? O que isso implica sobre a fatoração em primos de n?